INTERNATIONAL

Hydraulic Dampers

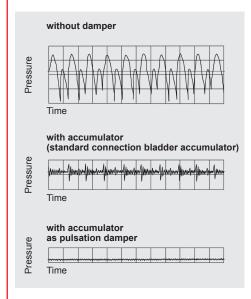
HYDRAULIC DAMPERS

1.1. DESCRIPTION

1.1.1 Function

The pressure fluctuations occurring in hydraulic systems can be cyclical or oneoff problems due to:

- flow rate fluctuations from displacement pumps
- actuation of shut-off and control valves with short opening and closing times
- switching on and off of pumps
- sudden linking of spaces with different pressure levels.


HYDAC hydraulic dampers are particularly suitable for damping such pressure fluctuations.

Selecting the most suitable hydraulic damper for each system ensures that

- vibrations caused by pipes, valves, couplings etc are minimised and subsequent pipe and valve damage is prevented
- measuring instruments are protected and their performance is no longer
- the noise level in hydraulic systems is reduced
- the performance of machine tools is improved
- interconnection of several pumps in one line is possible
- a pump rpm and feed pressure increase is possible
- the maintenance and servicing costs can be reduced
- the service life of the system is increased.

1.2. APPLICATION

Pulsation damping TYPE SB...P / SBO...P

General

The HYDAC pulsation damper

- prevents pipe breaks caused by material fatigue, pipe oscillations and irregular
- protects valves, control devices and other instruments,
- improves noise level damping.

Applications

The pulsation damper is particularly suitable for hydraulic systems, displacement pumps of all types, sensitive measurement and control instruments and manifolds in process circuits in the chemical industry.

Operation

The pulsation damper generally has two fluid connections and can therefore be fitted directly inline.

The flow is diverted in the fluid valve so that it is directed straight at the bladder or diaphragm. This causes direct contact of the flow with the bladder or diaphragm which, in an almost inertialess operation, balances the flow rate fluctuations via the gas volume.

It particularly compensates for higher frequency pressure oscillations. The precharge pressure is adjusted to individual operating conditions

Design

The HYDAC pulsation damper consists of:

- the welded or forged pressure vessel in carbon steel; available with internal coating or in stainless steel for chemically aggressive fluids;
- the special fluid valve with inline connection, which guides the flow into the vessel (threaded or flange connection).
- the bladder or diaphragm in various elastomers as shown under 1.4.1.

Installation

As close as possible to the pulsation source. Mounting position preferably vertical (gas valve pointing upwards).

Preferred and alternative installation positions are shown in schematic form in section 1.3.

General

The HYDAC suction flow stabiliser

- improves the NPSH value of the system;
- prevents cavitation of the pump;
- prevents pipe oscillations.

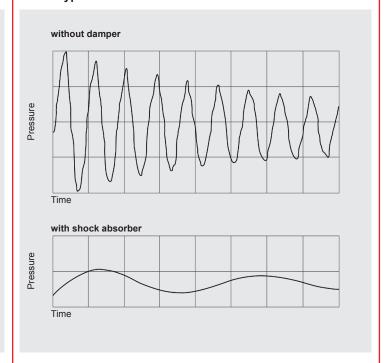
Applications

Main application areas are piston and diaphragm pumps in public utility plants, reactor construction and the chemical industry.

Trouble-free pump operation is only possible if no cavitation occurs in the pump suction and pipe oscillations are prevented.

A relatively high fluid volume in the suction flow stabiliser in relation to the displacement volume of the pump reduces the acceleration effects of the fluid column in the suction line. Also an air separation is achieved due to the extremely low flow rate in the suction flow stabiliser and the deflection on a baffle. By adjusting the charging pressure of the bladder to the operating conditions, the best possible pulsation damping is achieved.

Design


The HYDAC suction flow stabiliser consists of a welded vessel in steel or stainless steel.

Inlet and outlet are on opposite sides and are separated by a baffle. The upper part houses the encapsulated bladder. In addition, there is a vent screw in the cover plate and a drainage facility on the bottom.

Installation

As close as possible to the suction inlet of the pump. Mounting position vertical (gas valve uppermost).

1.2.3 Shock absorber Type SB...A

General

The HYDAC shock absorber

- reduces pressure shocks;
- protects pipelines and valves from being destroyed.

The accumulators are particularly suitable for use in pipelines with quick-acting valves or flaps and whilst pumps are being switched

They are also suitable for energy storage in low pressure applications.

Operation

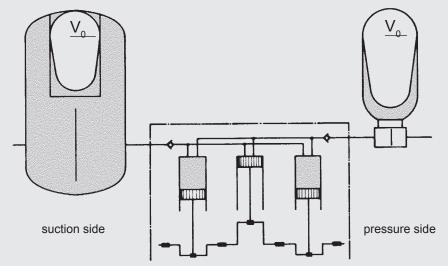
Sudden changes in pipeline flow, such as those caused by pump failure or the closing or opening of valves, can cause pressures which are many times higher than the normal values.

The shock absorber prevents this by converting potential into kinetic energy and vice versa. This prevents pressure shocks and protects pipelines, valves, control instruments and other devices from destruction.

Design

The HYDAC shock absorber consists of:

- the welded pressure vessel in carbon steel with or without corrosion protection or in stainless steel;
- the connection including perforated disc which prevents the flexible bladder from extruding from the vessel, and the flange;
- the bladder in various compounds as shown under section 1.4.1 with built-in gas valve, which is used for charging pressure p₀ and for possible monitoring activities.


Shock absorbers can also be in the form of diaphragm or piston accumulators. Available on request.

Installation

As close as possible to the source of the erratic condition. Mounting position vertical (gas valve pointing upwards).

1.3 SIZING

Pulsation damper and suction flow stabiliser 1.3.1

On the suction and pressure side of piston pumps almost identical conditions occur regarding irregularity of the flow rate. Therefore the same formulae for determining the effective gas volume are used for calculating the damper size. That in the end two totally different damper types are used is due to the different acceleration and pressure ratios on the two sides.

Not only is the gas volume $V_{\scriptscriptstyle 0}$ a decisive factor but also the connection size of the pump has to be taken into account when selecting the pulsation damper. In order to avoid additional variations in cross-section which represent reflection points for vibrations, and also to keep pressure drop to a reasonable level, the connection cross-section of the damper must be the same as the pipeline.

The gas volume V₀ of the damper is determined with the aid of the formula for adiabatic changes of state.

By giving the residual pulsation or the gas volume, the damper size can be calculated with the aid of the HYDAC software ASP (Accumulator Simulation Program).

Designations:

 ΔV = fluctuating fluid volume [I]

$$\Delta V = m \cdot q$$

q = stroke volume [I]

$$q = \frac{\pi \cdot d_{\kappa}^{2}}{4} \cdot h_{\kappa}$$

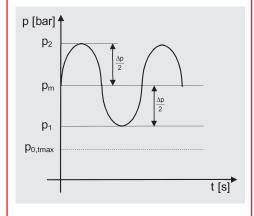
d_k = piston diameter [dm]

h_ν = piston stroke [dm]

m = amplitude factor

$$m = \frac{\Delta V}{q}$$

= no. of compressions / effective cylinders per revolution


 $x = residual pulsation [\pm \%]$

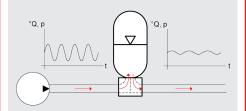
= isentropic exponent

= pressure ratio of pre-charge pressure to operating pressure [0.6 ... 0.9]

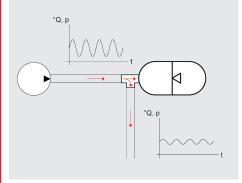
$$\Phi = \frac{p_0}{p_m}$$

 Δp = height of pressure fluctuations $\Delta p = p_2 - p_1 [bar]$

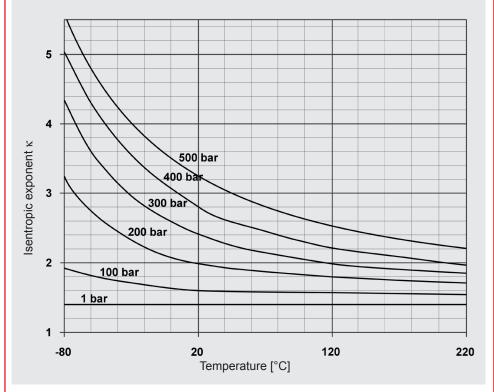
Formulae:


$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{x}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{x}{100}}\right]^{\frac{1}{\kappa}}}$$

$$\Delta V = m \cdot q$$


$$x [\pm \%] = \left| \frac{p_1 - p_m}{p_m} \cdot 100 \right|$$
$$= \left| \frac{p_2 - p_m}{p_m} \cdot 100 \right|$$

Schematic of installation options:


Preferred installation configuration with maximum damping effect

Alternative installation configuration using standard accumulator with a T-piece with reduced damping effect

Isentropic exponent κ dependent on pressure and temperature:

Amplitude factor (m) for piston pump:

	m value						
Z	single acting	double acting					
1	0.550	0.250					
2	0.210	0.120					
3	0.035	0.018					
4	0.042	0.010					
5	0.010	0.006					
6	0.018	0.001					
7	0.005						
8	0.010						
9	0.001						

others on request

Calculation example Given parameters:

Single-acting 3-piston pump

70 mm Piston diameter: Piston stroke: 100 mm Motor speed: 370 rpm Output: 427 I/min Operating temperature: 20 °C

Operating pressure

- Outlet: 200 bar - Inlet: 4 bar

Required:

- a) Suction flow stabiliser for a residual pulsation of ± 2.5%
- b) Pulsation damper for a residual pulsation of ± 0.5%

Solution:

a) Determining the required suction flow

$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{X}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{X}{100}}\right]^{\frac{1}{\kappa}}}$$

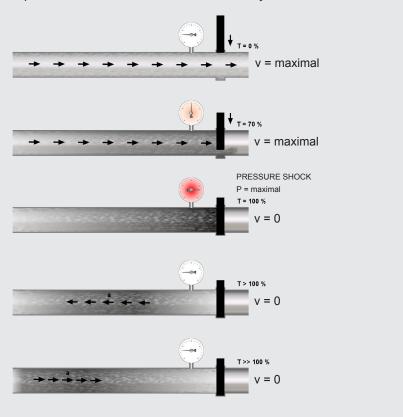
$$V_0 = \frac{0.035 \cdot \frac{\pi \cdot 0.7^2}{4} \cdot 1.0}{\left[\frac{0.6}{1 - \frac{2.5}{100}}\right]^{\frac{1}{1.4}} - \left[\frac{0.6}{1 + \frac{2.5}{100}}\right]^{\frac{1}{1.4}}}$$

 $V_0 = 0.54 I$

Selected: SB16S-12 with 1 litre gas volume

b) Determining the required pulsation

$$V_0 = \frac{\Delta V}{\left[\frac{\Phi}{1 - \frac{x}{100}}\right]^{\frac{1}{\kappa}} - \left[\frac{\Phi}{1 + \frac{x}{100}}\right]^{\frac{1}{\kappa}}}$$


$$V_0 = \frac{0,035 \cdot \frac{\pi \cdot 0,7^2}{4} \cdot 1,0}{\left[\frac{0,7}{1 - \frac{0,5}{100}}\right]^{\frac{1}{2,0}} - \left[\frac{0,7}{1 + \frac{0,5}{100}}\right]^{\frac{1}{2,0}}}$$

 $V_0 = 3.2 I$

Selected: SB330P-4

1.3.2 Shock absorber

Pressure shock produced when a valve is closed without a hydraulic accumulator

Simplified pressure shock calculation for the closing of a valve

Estimate of Joukowsky's max. occurring pressure shock

 $\Delta p(N/m^2) = \rho \cdot a \cdot \Delta v$ ρ (kg/m³) = fluid density

= V - V. Δv

= change of fluid velocity Δv

v (m/s) = fluid velocity

before the change

in its condition

v1 (m/s) = fluid velocity

after the change in its condition

a (m/s) = propagation velocity

of pressure wave

a [m/s] K⁺E•e

K (N/m²) = compression modulus

of the fluid

E (N/m²) = modulus of elasticity

of pipeline

D (mm) = internal diameter

of pipeline

= wall thickness e (mm)

of the pipeline

The pressure wave runs to the other end of the pipeline and will reach the valve again

after time t (reflection time), whereby:

$$t[s] = \frac{2 \cdot L}{a}$$

L [m] = length of the pipeline

T [s] = effective operating time (closing) of the valve

If T < t then:

 $= p_1 + \Delta p$

If T < t then:

 $= p_1 + \rho \cdot a \cdot \Delta v \cdot \frac{t}{T}$

Determining the required damper size

The accumulator must absorb the kinetic energy of the fluid by converting it into potential energy within the pre-determined pressure range. The change of state of the gas is adiabatic in this case.

$$V_{0} = \frac{m \cdot \Delta v^{2} \cdot 0,4}{2 \cdot p_{1} \cdot \left[\left[\frac{p_{2}}{p_{1}} \right]^{1-\frac{1}{\kappa}} - 1 \right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}} \right]^{\frac{1}{\kappa}}$$

m [kg] = weight of the fluid in the pipeline

v [m/s] = change in velocity of the fluid

p, [bar] = zero head of the pump

p, [bar] = permitted operating pressure

p₀ [bar] = pre-charge pressure

A special calculation program to analyse the pressure curve is available for sizing during pump failure or start-up and for manifolds.

Given parameters:

Length of the pipeline L: 2000 m

NW of pipeline D:

250 mm

Wall thickness of pipeline e:

6.3 mm

Material of pipeline:

Steel

Flow rate Q:

 $432 \text{ m}^3/\text{h} = 0.12 \text{ m}^3/\text{s}$

Density of medium p:

980 kg/m³

Zero feed height of pump p₁:

6 bar

Min. operating pressure p_{\min} :

4 bar

Effective closing time of the valve T: 1.5 s (approx. 20% of total closing time)

Operating temperature:

20°C

Compression modulus of the fluid K:

 $1.62 \times 10^9 \text{ N/m}^2$

Elasticity modulus (steel) E: $2.04 \times 10^{11} \text{ N/m}^2$

Required:

Size of the required shock absorber, when the max. pressure (p2) must not exceed 10 bar.

Solution:

Determination of reflection time:

$$a = \frac{1}{\sqrt{\rho \cdot \left[\frac{1}{K} + \frac{D}{E \cdot e}\right]}}$$

$$a = \frac{1}{\sqrt{980 \cdot \left[\frac{1}{162 \cdot 10^9} + \frac{250}{2.04 \cdot 10^{11} \cdot 6.3}\right]}}$$

$$t = \frac{2 \cdot L}{a} = \frac{2 \cdot 2000}{1120} = 3.575 s^*$$

* since T < t the max. pressure surge occurs and the formula as shown in section 1.3.2. must be used.

$$v = \frac{Q}{A}$$

$$v = \frac{0.12}{0.25^2 \cdot \frac{\pi}{4}} = 2.45 \text{ m/s}$$

$$\Delta_{\rho} = \rho \cdot a \cdot \Delta v$$

$$\Delta_{p}$$
 = 980 • 1120 • (2.45-0) •10⁻⁵
= 26.89 bar

$$p_{max} = p_1 + \Delta_p$$

$$p_{\text{max}} = 6 + 26.89 = 32.89 \text{ bar}$$

Determining the required gas volume:

$$p_0 \leq 0.9 \cdot p_{min}$$

$$p_0 \le 0.9 \cdot 5 = 4.5 \text{ bar}$$

$$V_{0} = \frac{m \cdot v^{2} \cdot 0.4}{2 \cdot p_{1} \cdot \left[\left[\frac{p_{2}}{p_{1}} \right]^{1 - \frac{1}{\kappa}} - 1 \right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}} \right]^{\frac{1}{\kappa}}$$

with
$$m = V \cdot \rho = \frac{\pi}{4} \cdot D^2 \cdot L \cdot \rho$$

$$V_0 = \frac{\frac{\pi}{4} \cdot 0.25^2 \cdot 2000 \cdot 980 \cdot 2.45^2 \cdot 0.4}{2 \cdot 7 \cdot \left[\left[\frac{11}{7} \right]^{\frac{1}{1.4}} - 1 \right] \cdot 10^2} \cdot \left[\frac{7}{4.5} \right]^{\frac{1}{1.4}}$$

$$V_0 = 1641 I$$

Selected:

4 x shock absorbers SB 35AH-450

1.4. TECHNICAL SPECIFICATIONS

E 3.701.14/03.16

Operating pressure

see tables (may differ from nominal pressure for foreign test certificates)

Nominal volume

see tables

Effective gas volume

see tables, based on nominal dimensions This differs slightly from the nominal volume and must be used when calculating the effective fluid volume.

For diaphragm accumulators, the effective gas volume corresponds to the nominal volume.

Effective fluid volume

Volume of fluid which is available between the operating pressures p₂ and p₄.

Gas charge

Hydraulic accumulators must only be charged with nitrogen. Never use other gases.

Risk of explosion!

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to

If other gases are to be used, please contact HYDAC for advice.

When supplied, the accumulator is only pre-charged for storage purposes. Higher pre-charge pressures are possible by arrangement.

Permitted pressure ratio

Ratio of maximum operating pressure p₂ to gas pre-charge pressure p₀. See catalogue section:

 HYDAC Accumulator Technology No. 3.000

General safety instructions

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell.

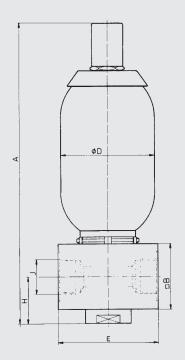
After the hydraulic line has been connected it must be completely vented. Work on systems with hydraulic dampers (repairs, connecting pressure gauges etc) must only be carried out once the pressure and the fluid have been released.

Please read the Operating Manuals!

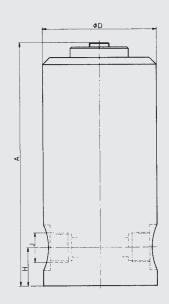
- Bladder accumulators No. 3.201.BA
- Diaphragm accumulators No. 3.100.BA
- Piston accumulators No. 3.301.BA

Operating temperature and operating fluid

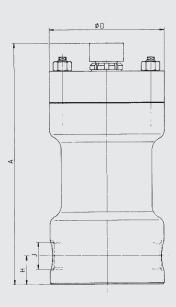
The permitted operating temperature of a hydraulic damper is dependent on the application limits of the metal materials and the separating element. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table shows the standard selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids:


Materials			_	Temperature range	Overview of the fluids 2)	
		Material code 1)	Accumulator type		Resistant to	Not resistant to
NBR	Acrylonitrile butadiene rubber	2	SB, SBO	-15 °C + 80 °C -50 °C + 50 °C	 Mineral oil (HL, HLP) Flame-resistant fluids of the groups HFA, HFB, HFC 	Aromatic hydrocarbonsChlorinated hydrocarbons (HFD-S)
		5	SB, SBO	-50 °C + 50 °C	Synthetic ester (HEES) Water	Amines and ketonesHydraulic fluids of the group
		9	SB, SBO	-30 °C + 80 °C	Sea water	HFD-R • Fuels
ECO	Ethylene oxide epichlorohydrin rubber	3	SB	-30 °C +120 °C	 Mineral oil (HL, HLP) Flame-resistant fluids of the group HFB Synthetic ester (HEES) Water Sea water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of the group HFD-R
			020	10 0 120 0	Sea water	Flame-resistant fluids of the groups HFA and HFCFuels
IIR	Butyl rubber	4	SB -50 °C	-50 °C +100 °C	 Hydraulic fluids of type HFD-R Flame-resistant fluids of the group HFC 	Mineral oils and mineral greasesSynthetic ester (HEES)Skydrol and HyJet IV
			SBO	-50 °C +120 °C	Water	Aliphatic, chlorinated and aromatic hydrocarbonsFuels
FKM	Fluorine rubber	6	SB, SBO	-10 °C +150 °C	 Mineral oil (HL, HLP) Hydraulic fluids of the group HFD Synthetic ester (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Amines and ketones Ammonia Skydrol and HyJet IV Steam

¹⁾ see section 1.4.1 Model code, material code, accumulator bladder/diaphragm

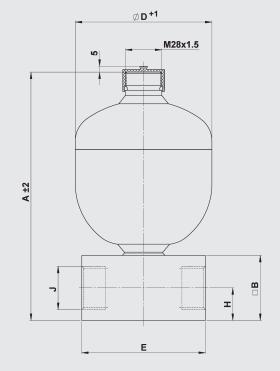

²⁾ others available on request

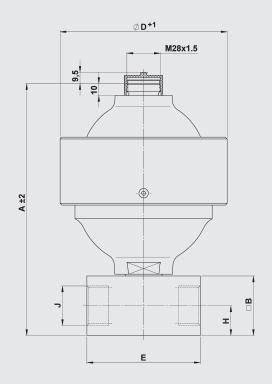
1.4.3 Pulsation dampers


SB330/550P(PH)-...

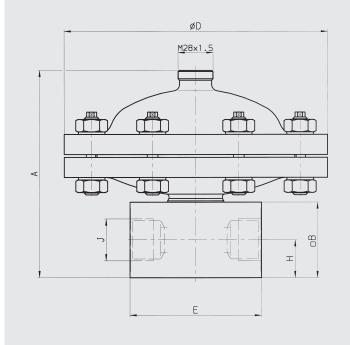
SB800P-...

SB1000P-...


Dimensions SB


Nominal volume [l]	Max. operating pressure (PED) [bar]	Eff. gas volume [l]	Weight [kg]	A [mm]	□ B [mm]	Ø D	E [mm]	H [mm]	J ²⁾ Thread ISO 228	Series
	330		11	365	80	118		57		SB330P
1	550	1	13	384	70	121	120	53	G 1 1/4	SB550P
4.5	800 ³⁾	4.0	36	346	_	160	_	55		SB800P
1.5	1000 ³⁾	1.3	94	414	_	215	_	49	1)	SB1000P
2.5	330	2.4	16	570	80	118		57		SB330P
2.5	550	2.5	20	589	70	121	120	53	G 1 1/4	SB550P
4	330	3.7	18	455	80	171		57		SB330P
4	330	3.7	26	491	100] '/'	150	85	G 1 1/2	SB330PH
5	550	4.9	26	917	70	121	120	53	G 1 1/4	SB550P
6		5.7	20	559	80	171	120	57	G 1 1/4	SB330P
O	330	5.7	28	593	100] ' ' '		85	G 1 1/2	SB330PH
10	330	0.3	40	620	100			00	G 1 1/2	SB330P
10		9.3	50	652	130x140			100	SAE 2" - 6000 psi	SB330PH
13		12	48	712	100]		0.5	G 1 1/2	SB330P
20	330	10.4	70	920	100	220	150	85	G 1 1/2	SB330P
20		18.4	80	952	130x140	229		100	SAE 2" - 6000 psi	SB330PH
24		23.6	82	986	100]		95	C 1 1/2	SB330P
20	330	33.9	100	1445	100			85	G 1 1/2	SB330P
32			110	1475	130x140]		100	SAE 2" - 6000 psi	SB330PH

M56x4, high pressure connection DN 16, others on request
 Standard connection code = AI, others on request
 Special design, on request


Dimensions SBO

Nominal volume	Max. opera (PED)	ating pressure	Weight	А	□В	ØD	E	Н	J thread	Series and connection type 1)	on	
[1]	Carbon steel [bar]	Stainless steel (NIRO) [bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228			
0.075	250	_	0.9	131	_	64	44 5	40	0.4/4	SBO250PE1AK		
0.16		180	1	143	_	74	41 hex.	13	G 1/4	SBO210PE1AK	1	
0.32	210	160	2.6	175	- 50	93	- 80	25	G 1/2	SBO210PE1Al]	
0.5		_	3	192	750	105	7 80	25	G 1/2	3BO210PE1AI		
0.6	330	_	5.6	222		115				SBO330PE1Al		
0.75	210	140	5.1	217		121					SBO210PE1Al	
1	200	_	6	231		136				SBO200PE1Al	be	
	140	_	6.2	244		145				SBO140PE1Al	weld-type	
1.4	210	_	7.7	250		150		30		SBO210PE1Al	we	
	250	_	8.2	255	60	153	105		G 1	SBO250PE1Al		
2	100	100	6.3	261		160					SBO100PE1Al	
2	210	_	8.9	267		167				SBO210PE1Al		
3.5	250	_	13.5	377		170				SBO250PE1Al		
4		50	7.9	368		158				SBO50PE1AI]	
4	_	250	13.5	377		170				SBO250PE1Al		
0.25	500	350	5.2 (6.3)	162	50	115 (125)	80	25	G 1/2	SBO500PA6AI		
0.6	450	250	8.9 (9.1)	202		140 (142)	95	25		SBO450PA6AI	ي [
1.3	400	_	13.8	267		199				SBO400PA6AI	-ty	
2	250	180	15.6	285	60	201	105			G 1	SBO250PA6AI	thread-type
2.8	400	_	24.6	308		252	105	30		CDC400D AC AL	₽	
4	400	_	36.6	325	7	287					SBO400PA6AI	

Standard connection code = AK or AI, others on request
 Brackets indicate different dimensions for stainless steel version (NIRO)

Pulsation dampers for aggressive media

SBO...P-...A6/347...(PTFE)

Pulsation damper in stainless steel with PTFE coated diaphragm and PTFE or FFKM seals. Also available without connection block.

Permitted operating temperature: -15 $^{\circ}\text{C}$... +80 $^{\circ}\text{C}$

Permitted pressure ratio p_2 : p_0 = 2 : 1

Nominal volume	Max. operating pressure (PED)	Weight	А	□В	ØD	E	Н	J ¹⁾ Thread
[1]	[bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228
0.2	40	11	140		210			
0.2	250	27	197	00	230	405	20	0.4
0.5	40	12	165	60	210	105 3	30	G 1
	250	26	200		230			

standard connection code = AI, others on request

SBO...(P)-...A4/777... (PVDF/PTFE)

Diagram 1

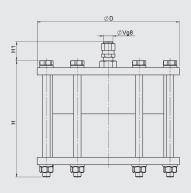
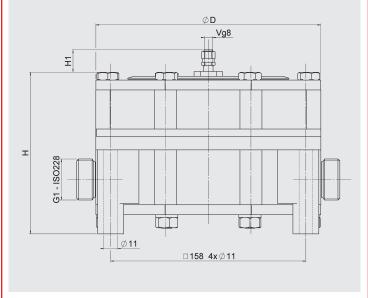
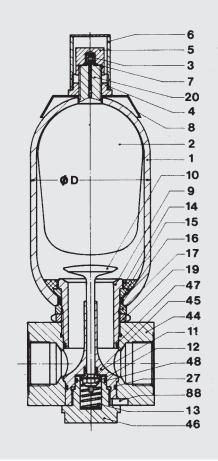



Diagram 2


Pulsation damper in PVDF with PTFE-coated diaphragm.

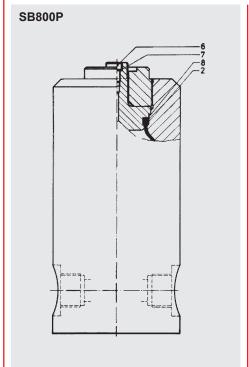
Permitted operating temperature: -10 $^{\circ}\text{C}$... +65 $^{\circ}\text{C}$

Permitted pressure ratio p_2 : p_0 = 2 : 1

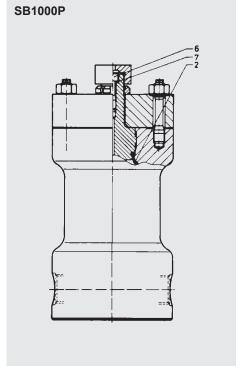
Nominal volume	Max. operating pressure (PED)	Weight	ØD	Н	H1	Diag.
[1]	[bar] ´	[kg]	[mm]	[mm]	[mm]	
0.08	10	1.5	115	94	15	1
	10	5.7		128	20	
0.2	16	6.4		130	18	
	25	0.4	182	130	10	2
0.5	10	6	102	168	20	4
	16	6.0		170	10	
	25	6.8		170	19	

SB...P

Description	Item			
Bladder assembly*				
consisting of:				
Bladder	2			
Gas valve insert	3			
Retaining nut	4			
Cap nut	5			
Protection cap	6			
O-ring	7			
Seal kit*				
consisting of:				
O-ring	7			
Washer	15			
O-ring	16			
Support ring	23			
O-ring	27			
O-ring	47			
O-ring	48			
Anti-extrusion ring*	14			
Gas valve insert*				
* recommended spares				

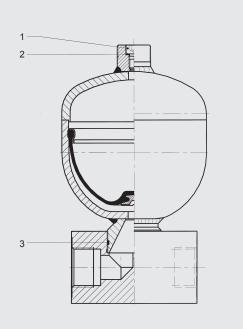

* recommended span	es
--------------------	----

Description	Item
Connection assembly	
consisting of:	
Oil valve body	9
Valve poppet	10
Damping sleeve	11
Lock nut	12
Spring	13
Anti-extrusion ring	14
Washer	15
O-ring	16
Spacer	17
Lock nut	19
Support ring (only for 330 bar)	23
O-ring	27
Connector	44
Guide piece	45
Cap	46
O-ring	47
O-ring	48
Locking key	88


O-ring dimensions (mm)

Series	Nom. volumes	Item 7	Item 16	Item 27	Item 47	Item 48
SB330P	1- 6 I	7.5x2	55x3.5 1)	42.2x3 1)	46x3 1)	24.2x3 1)
SB550P	1- 5 I	7.5x2	50.17x5.33 1)	37.82x1.78 1)	40.94x2.62 ¹⁾	23.52x1.78 1)
SB330P/PH	10-32 l/4+6 l	7.5x2	80x5 1)	57.2x3 ¹⁾	67.2x3 ¹⁾	37.2x3 1)
SB330PH	10-32 I	7.5x2	100x5 1)	64.5x3 ¹⁾	84.5x3 ¹⁾	44.2x3 1)

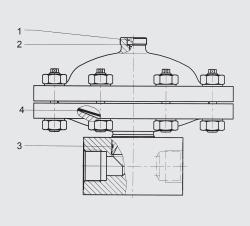
¹⁾ For code 663 and 665 different dimensions



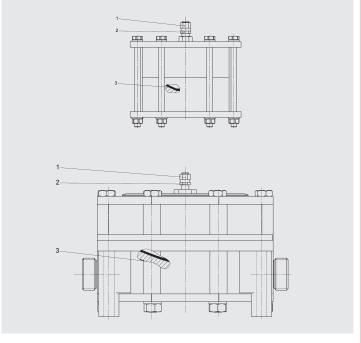
Description	Item
Bladder	2
Charging screw	6
Seal ring U 9.3x13.3x1	7
Support ring	8

Description	Item
Bladder	2
Charging screw	6
Seal ring	7

SBO...P...E


Description	Item
Charging screw	1
Seal ring	2
Seal ring	3

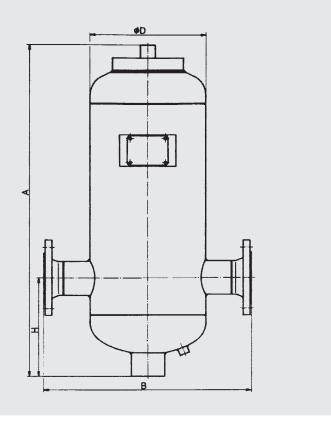
SBO...P...A6


Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4
Support ring	5

SBO...P-...A6/347...(PTFE)

Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4

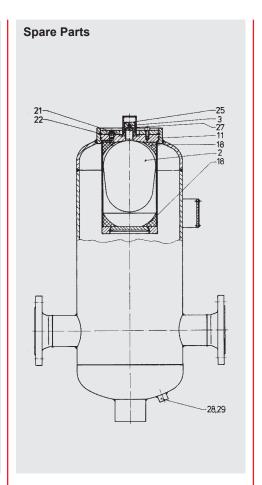
SBO...(P)-...A4/777... (PVDF/PTFE)



Description	Item
Gas valve complete	1
Gas valve insert brass / stainless steel	2
Diaphragm	3

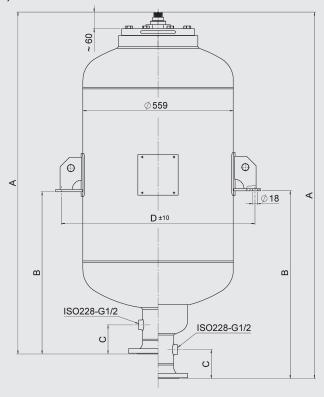
Relevant operating manual is available on request.

1.4.4 Suction flow stabiliser


SB16S

SB16S -	SB16S – permitted operating pressure 16 bar (PED)										
Nominal volume	Fluid volume	Eff. gas volume	Weight	Α	В	ØD	Н	DN*			
[1]	[I]	[I]	[kg]	[mm]	[mm]	[mm]	[mm]				
12	12	1	40	580	425	219	220	65			
25	25	2.5	60	1025	425	219	220	05			
40	40	4	85	890	540	300	250	80			
100	100	10	140	1150	650	406	350	100			
400	400	35	380	2050	870	559	400	125			

Further pressure ranges 25 bar, 40 bar; others on request. Other fluid volumes on request



Description	Item
Bladder	2
Gas valve insert	3
O-ring	11
Insertion ring, 2x	18
Lock nut	21
Retaining ring	22
Cap nut	25
O-ring	27
Seal ring	28
Lock nut	29

^{*} to EN1092-1/11 /B1/PN16

1.4.5 Shock absorber

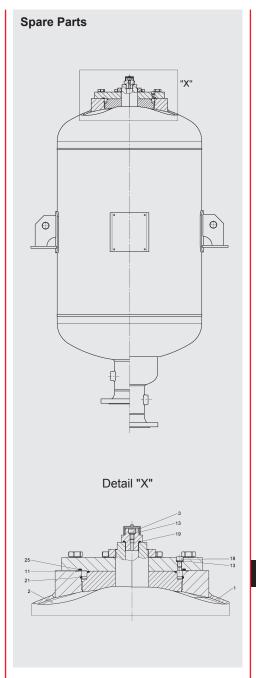
SB16/35A, SB16/35AH

Dimensions

SB16/35A

Permitted operating pressure 16/35 bar (PED)

Nominal	Eff. gas	Weight		Α		В		С		D ±10	
volume	volume			(approx	(.)	(approx.)		(approx.)			
		[kg]		[mm]		[mm]		[mm]		[mm]	
[1]	[1]	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A
100	108	110	144	854	881	398	418				
150	151	127	171	1044	1076	493	578				
200	205	149	208	1275	1318	691	699	108	121	720	728
300	290	178	261	1644	1701	920	937	100	121	120	120
375	376	214	315	2020	2086	1063	1083				
450	455	244	364	2361	2436	1234	1258				

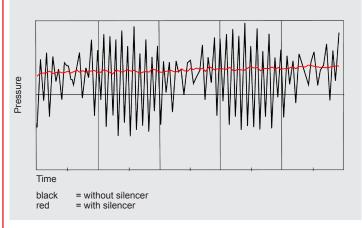

to EN1092-1/11 / PN16 or PN40 others on request

SB16/35AH

Permitted operating pressure 16/35 bar (PED)

Nominal	Eff. gas	Weight		Α		В		С		DN*	
volume	volume			(approx.)		(approx.)		(approx.)			
		[kg]		[mm]	[mm]			[mm]			
[1]	[1]	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH
100	108	118	153	945	971	488	508				728
150	151	135	180	1135	1166	638	641			720	
200	205	157	217	1366	1408	754	762	108	121		
300	290	186	270	1735	1791	988	1000	100	121	120	120
375	376	222	324	2111	2176	1127	1146				
450	455	252	373	2452	2526	1298	1321				

to EN1092-1/11 / PN16 or PN40 others on request



Description	Item
Bladder assembly	2
Gas valve assembly consisting of:	
Screw plug	3
Gas valve body	12
Seal ring	13
O-ring	19
Protection cap	29
Seal kit consisting of:	
O-ring	11
Seal ring	13
Air bleed screw	18
O-ring	19
Retaining ring	21
O-ring	25
Item 1 not available as a spare part	

2. SILENCER

2.1. APPLICATION

2.1.1 Silencer for fluid noise damping Type SD...

General

All displacement pumps, such as axial and radial piston pumps, vane, gear or screw pumps produce volume and pressure fluctuations which are exhibited as vibrations and noises. Noises are not only generated and transmitted by the pump. They are also the result of mechanical vibrations and vibrations caused by the fluid pulsations, which are amplified when transmitted to larger surfaces. Insulation, the use of flexible hoses and silencer covers can provide only partial solutions to the problem as they do not prevent transmission to other areas.

Applications

Vehicles, machine tools, plastics machinery, aeroplanes, ships, hydraulic power stations and other systems with a large "surface" are all applications where the noise level can be reduced.

Operation

The HYDAC fluid SILENCER is based on the principle of an expansion chamber with interference line.

By reflecting the oscillations within the silencer the majority of the oscillations are dampened across a wide frequency spectrum.

Design

The HYDAC SILENCER consists of a welded or forged external housing, an internal tube and two pipe connections on opposite

The SILENCER has no moving parts and no gas charge and is therefore absolutely maintenance free.

The HYDAC SILENCER can be used for mineral oils, phosphate ester and water glycol. A stainless steel model is available for other fluids.

Special model

SILENCERS can also be in the form of diaphragm or piston accumulators. Available on request.

Installation

It is recommended that one connection side is joined via a flexible hose in order to reduce the transmission of mechanical vibrations.

The installation position of the damper is optional, but the flow direction must be taken into account.

Please read the operating manual! No. 3.701.BA

2.2. SIZING

2.2.1 Silencer

The sizing calculation of the HYDAC SILENCER is designed to result in a small unit with the best possible damping. The starting point for the selection table is to determine the level of transmission damping D from 20 dB upwards.

$$D = 20 \cdot \log \frac{\Delta p_o}{\Delta p_m}$$

∆p = height of pressure fluctuations without silencer

 Δp_m = height of pressure fluctuations with silencer

When selecting the damper the following has to be taken into account:

1) the size of the silencer body

2) the fundamental frequency f of the pump

 $f = i \cdot n / 60 \text{ in Hz}$

i = number of displacement elements

n = motor speed in rpm

2.2.2 Calculation example

Given parameters:

Axial piston pump with 9 pistons Motor speed: 1500 rpm

Connection: G1 corresponds to D = 19 mm

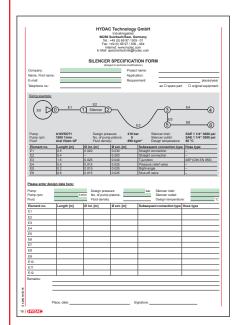
Flow rate: 300 l/min Operating medium: mineral oil Max. operating pressure: 210 bar

Solution:

Fundamental frequency f

= i • n / 60 in Hz

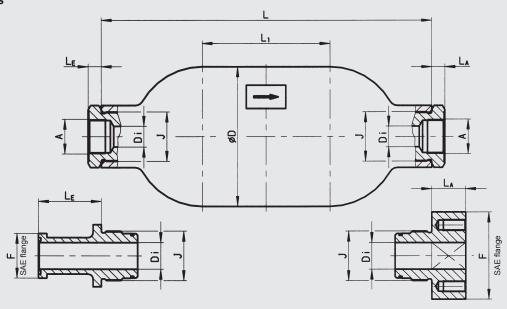
9 • 1500/60


= 225 Hz

By calculating the fundamental frequency and using the system data (e.g. pipe length, ball valves, pressure, temperature, etc.) we can determine the correct size of silencer for you.

Use the specification sheet to provide the required data quickly and conveniently on the PC and send it to us.

See www.hydac.com or catalogue section


 HYDAC Accumulator Technology No. 3.000

2.3. TECHNICAL SPECIFICATIONS Model code 2.3.1 Not all combinations are possible. Order example. For further information, please contact HYDAC. SD330 M - 4,2 / 212 U - 330 AD/AD **Series** Type code no details = for SD 330 = bladder accumulator base body* Κ = piston accumulator base body* M = diaphragm accumulator base body* Nominal volume [I] **Damper** = without pipe = damper for frequencies > 500 Hz 1 2 = narrow band damper - DR 3 = broadband damper - DR **Housing material** = carbon steel = carbon steel with protective coating* 2 = NBR (-15 °C ... + 80 °C) = FKM (-10 °C ... +160 °C) 6 **Certification code** = European Pressure Equipment Directive (PED) Permitted operating pressure [bar] Inlet connector/outlet connector see Table 2.3.3

* only on request

SD330

Nominal volume [l]	L [mm]	L1 [mm]	Ø D [mm]	J ISO 228	Weight [kg]
1.3	250	_	114	G 1	6.5
1.8	355	155	114	G 1 1/4	5.5
4.2	346	_	168	G 1 1/2	12.5
4.7	420	155	100	G 2	11.4

2.3.3 Silencer connections

a) Threaded connection to ISO 228

		Fluid connection A												
	AB G 3/8 D ₁ = 15 mm		G 3/8 G 1/2		G	AD G 3/4 D ₁ = 16 mm		AE G 1 D; = 19 mm		AF G 1 1/4 D ₁ = 25 mm		AG G 1 1/2 D ₁ = 32 mm		i G 1/2 = J
Nominal volume [l]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E	L _A [mm]
1.3	17	17	-	_	-	_		_	-	_	-	_	-	
1.8	-	_	13	13	13	13	30	30	33	33	_			_
4.2	-	_	-	_	-	_	_		-	_	_	_	without	adapter
4.7	-	_	-	_	16	16	16	16	26	26	36	36	36	36

b) Flange connection SAE J518 (Code 62 - 6000 psi)

						Fluid co	nnection F	-			
	FG		FH		F	I	FK		F	L	FM
	SAE	1/2"	SAE	AE 3/4" SAE 1"		1 "	SAE 1 1/4"		SAE 1 1/2"		SAE 2"
Nominal	$D_i = 1$	I3 mm	mm D _i = 19 mm		D _i = 25 mm		$D_i = 3$	2 mm	D _i = 38 mm		D _i = 50 mm
volume [l]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm]	L _A [mm]	L _E [mm] L _A [mm]
1.3	-	_	_		_	-	-	_	-	-	_
1.8	53	31	59	36	65	36	-	_	_		_
4.2			_		_		0	33	_		
4.7	- 105		36	120	36	76	28	76	28	*	

⁻ not available * on request

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet

66280 Sulzbach/Saar, Germany Tel.: 0049 (0) 68 97 / 509 - 01 Fax: 0049 (0) 68 97 / 509 - 464

Internet: www.hydac.com

E-Mail: speichertechnik@hydac.com